

NS-QSFP28-CWDM4-2

100Gb/s 10km QSFP28 Transceiver Hot Pluggable, CWDM4 Duplex LC Connector, Single mode

Features:

- ♦ 4 lanes MUX/DEMUX design
- ♦ Integrated CWDM TOSA / ROSA for up to 2km reach over SMF
- ♦ Support 100GBASE-CWDM4 for line rate of 103.125Gbps and OTU4 for line rate of 111.81Gbps
- → Aggregate bandwidth of > 100Gbps
- ♦ Duplex LC connectors
- ♦ Compliant with IEEE 802.3-2012 Clause 88 standard IEEE 802.3bm CAUI-4 chip to module electrical standard ITU-T G.959.1-2012-02 standard
- ♦ Single +3.3V power supply operating
- ♦ Built-in digital diagnostic functions
- ♦ Temperature range 0°C to 70°C
- ♦ RoHS Compliant Part

Applications:

- ♦ Local Area Network (LAN)
- ♦ Wide Area Network (WAN)
- Ethernet switches and router applications

Филиал в Новосибирске: E-mail: info@newnets.ru Тел: +7 (383) 376 66 75

Description:

The NS-QSFP28-CWDM4-2 is a transceiver module designed for 2km optical communication applications. The design is compliant to 100GbASE-LR4 of the IEEE 802.3-2012 Clause 88 standard IEEE 802.3bm CAUI-4 chip to module electrical standard ITU-T G.959.1-2012-02 standard . The module converts 4 inputs channels (ch) of 25.78 Gbps to 27.95Gbps electrical data to 4 lanes optical signals, and multiplexes them into a single channel for 100Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 100Gb/s input into 4 lanes signals, and converts them to 4 lanes output electrical data.

The central wavelengths of the 4 lanes are 1270 nm, 1290 nm, 1310 nm and 1330 nm . It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module operates from a single +3.3V power supply and LVCMOS/LVTTL global control signals such as Module Present, Reset, Interrupt and Low Power Mode are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals and to obtain digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The NS-QSFP28-CWDM4-10 is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	I _{cc}		1100	1500	mA
Power Dissipation	PD			5	W

● Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.13 to 3.47 Volts

Parameter	Symbol	Min	Тур	Max	Unit	Note
Data Bata per Channel		-	25.78125		Cha.	
Data Rate per Channel			27.9525		Gbps	
Power Consumption		-	2.7	3.5	W	
Supply Current	Icc		0.8	1	Α	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Inter-Channel Skew	TSK			35	Ps	
RESETL Duration			10		Us	
RESETL De-assert time				100	ms	
Power On Time				100	ms	
Transmitter						
Single Ended Output Voltage		0.3		Vcc	٧	1
Tolerance		0.5		VCC	V	1
Common mode Voltage Tolerance		15			mV	

E-mail: info@newnets.ru

Центральный офис в Москве: Тел: +7 (499) 346 00 00

Филиал в Новосибирске: Тел: +7 (383) 376 66 75

Transmit Input Diff Voltage	VI	150		1200	mV	
Transmit Input Diff Impedance	ZIN	85	100	115		
Data Dependent Input Jitter	DDJ		0.3		UI	
Receiver						
Single Ended Output Voltage		0.3		4	V	
Tolerance		0.5		7	•	
Rx Output Diff Voltage	Vo	370	600	950	mV	
Rx Output Rise and Fall Voltage	Tr/Tf			35	ps	1
Total Jitter	TJ		0.3		UI	

Note:

1. 20~80%

Optical Parameters(TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
	LO	1264.5	1271	1277.5	nm	
	L1	1284.5	1291	1297.5	nm	
Wavelength Assignment	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
Side-mode Suppression Ratio	SMSR	30	-	-	dB	
Total Average Launch Power	PT	-4.5	-	6.5	dBm	
Average Launch Power, each Lane		-4.5	-	2.5	dBm	
Difference in Launch Power between any two Lanes (OMA)		-	-	3.5	dB	
TDP, each Lane	TDP			2.2	dB	
Extinction Ratio	ER	4	-	-	dB	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				
Optical Return Loss Tolerance		-	-	20	dB	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Relative Intensity Noise	Rin			-128	dB/H Z	1

Центральный офис в Москве:

Тел: +7 (499) 346 00 00 E-mail: info@newnets.ru

Филиал в Новосибирске:

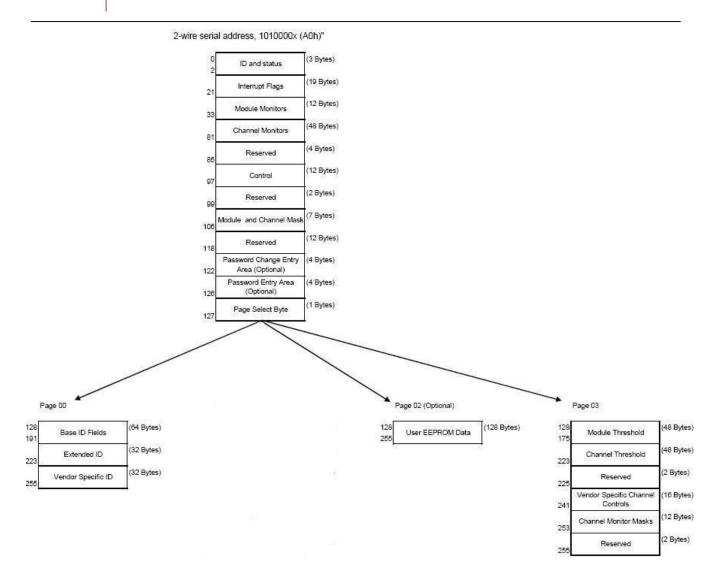
Тел: +7 (383) 376 66 75

	1	1	1	_	1	1
Optical Return Loss Tolerance		-	-	12	dB	
Receiver						
Damage Threshold	THd	3.3			dBm	1
Average Power at Receiver Input, each	R	-11		0	dBm	
Lane						
RSSI Accuracy		-2		2	dB	
Receiver Reflectance	Rrx			-26	dB	
Receiver Power (OMA), each Lane		-	-	3.5	dBm	
LOS De-Assert	LOSD			-15	dBm	
LOS Assert	LOSA	-25			dBm	
LOS Hysteresis	LOSH	0.5			dB	

E-mail: info@newnets.ru

Note

1. 12dB Reflection


Diagnostic Monitoring Interface

Digital diagnostics monitoring function is available on all QSFP28 IR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in flowing. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Byte Address	Description	Туре
0	Identifier (1 Byte)	Read Only
1-2	Status (2 Bytes)	Read Only
3-21	Interrupt Flags (31 Bytes)	Read Only
22-33	Module Monitors (12 Bytes)	Read Only
34-81	Channel Monitors (48 Bytes)	Read Only
82-85	Reserved (4 Bytes)	Read Only
86-97	Control (12 Bytes)	Read/Write
98-99	Reserved (2 Bytes)	Read/Write
100-106	Module and Channel Masks (7 Bytes)	Read/Write
107-118	Reserved (12 Bytes)	Read/Write
119-122	Reserved (4 Bytes)	Read/Write
123-126	Reserved (4 Bytes)	Read/Write
127	Page Select Byte	Read/Write

Byte Address	Description	Туре
128-175	Module Thresholds (48 Bytes)	Read Only
176-223 Reserved (48 Bytes)		Read Only
224-225	Reserved (2 Bytes)	Read Only
226-239	Reserved (14 Bytes)	Read/Write
240-241	Channel Controls (2 Bytes)	Read/Write
242-253	Reserved (12 Bytes)	Read/Write
254-255	Reserved (2 Bytes)	Read/Write

Тел: +7 (499) 346 00 00 E-mail: info@newnets.ru

Address	Name	Description
128	Identifier (1 Byte)	Identifier Type of serial transceiver
129	Ext. Identifier (1 Byte)	Extended identifier of serial transceiver
130	Connector (1 Byte)	Code for connector type
131-138	Transceiver (8 Bytes)	Code for electronic compatibility or optical compatibility
139	Encoding (1 Byte)	Code for serial encoding algorithm
140	BR, nominal (1 Byte)	Nominal bit rate, units of 100 Mbits/s
141	Extended RateSelect Compliance (1 Byte)	Tags for Extended RateSelect compliance
142	Length SMF (1 Byte)	Link length supported for SM fiber in km
143	Length E-50 μm (1 Byte)	Link length supported for EBW 50/125 µm fiber, units of 2 m
144	Length 50 μm (1 Byte)	Link length supported for 50/125 μm fiber, units of 1 m
145	Length 62.5 μm (1 Byte)	Link length supported for 62.5/125µm fiber, units of 1 m
146	Length copper (1 Byte)	Link length supported for copper, units of 1 m
147	Device Tech (1 Byte)	Device technology
148-163	Vendor name (16 Bytes)	QSFP vendor name (ASCII)
164	Extended Transceiver (1 Byte)	Extended Transceiver Codes for InfiniBand [†]
165-167	Vendor OUI (3 Bytes)	QSFP vendor IEEE vendor company ID
168-183	Vendor PN (16 Bytes)	Part number provided by QSFP vendor (ASCII)
184-185	Vendor rev (2 Bytes)	Revision level for part number provided by vendor (ASCII)
186-187	Wavelength (2 Bytes)	Nominal laser wavelength (Wavelength = value / 20 in nm)
188-189	Wavelength Tolerance (2 Bytes)	Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm)
190	Max Case Temp (1 Byte)	Maximum Case Temperature in Degrees C
191	CC_BASE (1 Byte)	Check code for Base ID fields (addresses 128-190)
192-195	Options (4 Bytes)	Rate Select, TX Disable, TX Fault, LOS
196-211	Vendor SN (16 Bytes)	Serial number provided by vendor (ASCII)
212-219	Date code (8 Bytes)	Vendor's manufacturing date code
220	Diagnostic Monitoring Type (1 Byte)	Indicates which type of diagnostic monitoring is implemented
221	Enhanced Options (1 Byte)	Indicates which optional enhanced features are implemented
222	Reserved (1 Byte)	Reserved
223	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)
224-255	Vendor Specific (32 Bytes)	Vendor Specific EEPROM

Page02 is User EEPROM and its format decided by user.

The detail description of low memory and page00.page03 upper memory please see SFF-8436 document.

Центральный офис в Москве:

Филиал в Новосибирске: Тел: +7 (499) 346 00 00 E-mail: info@newnets.ru Тел: +7 (383) 376 66 75

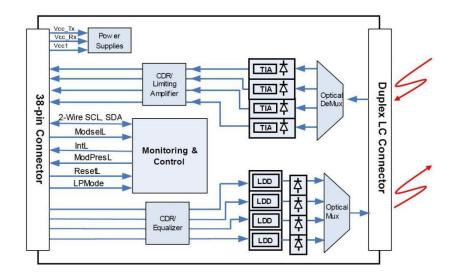
Timing for Soft Control and Status Functions

Parameter	Symbol	Max	Unit	Conditions
				Time from power on1, hot plug or rising
Initialization Time	t_init	2000	ms	edge of Reset until the module is fully functional2
				A Reset is generated by a low level longer
Reset Init Assert Time	t_reset_init	2	μs	than the minimum reset pulse time present on the ResetL pin.
Serial Bus Hardware	t serial	2000	ms	Time from power on1 until module responds to data transmission over the 2-wire serial
Ready Time	_			bus
Monitor Data Ready	+ da+a	2000		Time from power on1 to data not ready, bit
Time	t_data	2000	ms	0 of Byte 2, deasserted and IntL asserted
Docat Assart Time	t roset	2000	mc	Time from rising edge on the ResetL pin until
Reset Assert Time	t_reset	2000	ms	the module is fully functional2
				Time from assertion of LPMode
LPMode Assert Time	ton_LPMode	100	μs	(Vin:LPMode =Vih) until module power
				consumption enters lower Power Level
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition
IIIL ASSERT TIME	ton_mtt	200	1113	triggering IntL until Vout:IntL = Vol
				toff_IntL 500 μs Time from clear on read3
IntL Deassert Time	toff_IntL	500	μs	operation of associated flag until Vout:IntL =
mile beassert mine	1011_11112			Voh. This includes deassert times for Rx LOS,
				Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
				Time from occurrence of condition
Flag Assert Time	ton_flag	200	ms	triggering flag to associated flag bit set and IntL asserted
		100		Time from mask bit set4 until associated IntL
Mask Assert Time	ton_mask	100	ms	assertion is inhibited
Mask De essent The	toff meals	100		Time from mask bit cleared4 until associated
Mask De-assert Time	toff_mask	100	ms	IntlL operation resumes
	top MadCal			Time from assertion of ModSelL until
ModSelL Assert Time	ton_ModSel	100	μs	module responds to data transmission over
	L			the 2-wire serial bus

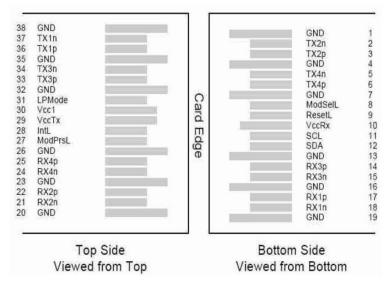
Центральный офис в Москве: Тел: +7 (499) 346 00 00

Филиал в Новосибирске:E-mail: info@newnets.ruТел: +7 (383) 376 66 75

ModSelL Deassert Time	toff_ModSel L	100	μs	Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set 4 until module power consumption enters lower Power Level
Power_over-ride or Power-set De-assert	toff_Pdown	300	ms	Time from P_Down bit cleared4 until the module is fully functional3
Time				


Note:

1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.


- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 de-asserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

Transceiver Block Diagram

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

Pin Description

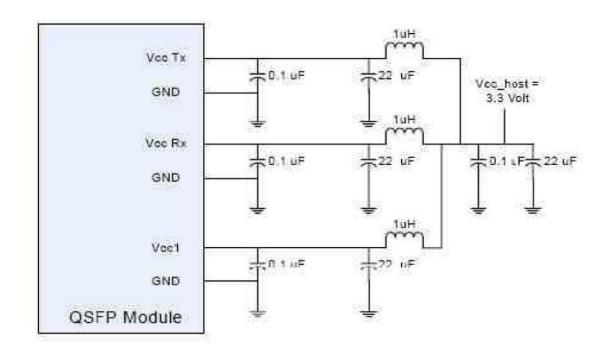
Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	

Центральный офис в Москве: Тел: +7 (499) 346 00 00

E-mail: info@newnets.ru

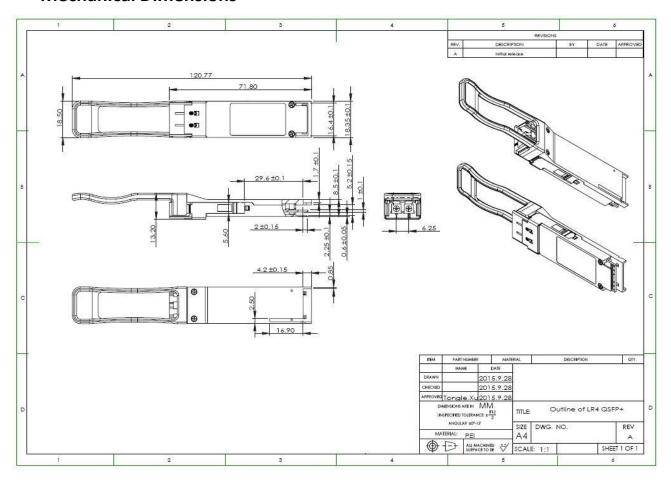
Филиал в Новосибирске:

Тел: +7 (383) 376 66 75


32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Notes:

- GND is the symbol for single and supply(power) common for QSFP28 modules, All are common within
 the QSFP28 module and all module voltages are referenced to this potential otherwise noted. Connect
 these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or
 open, enabled on TDIS <0.8V.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for maximum current of 500mA.



Recommended Circuit

Mechanical Dimensions

NetsGroup reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information.